PCR-Based Simple Subgrouping Is Validated for Classification of Gliomas and Defines Negative Prognostic Copy Number Aberrations in IDH Mutant Gliomas
نویسندگان
چکیده
Genetic subgrouping of gliomas has been emphasized recently, particularly after the finding of isocitrate dehydrogenase 1 (IDH1) mutations. In a previous study, we investigated whole-chromosome copy number aberrations (CNAs) of gliomas and have described genetic subgrouping based on CNAs and IDH1 mutations. Subsequently, we classified gliomas using simple polymerase chain reaction (PCR)-based methods to improve the availability of genetic subgrouping. We selected IDH1/2 and TP53 as markers and analyzed 237 adult supratentorial gliomas using Sanger sequencing. Using these markers, we classified gliomas into three subgroups that were strongly associated with patient prognoses. These included IDH mutant gliomas without TP53 mutations, IDH mutant gliomas with TP53 mutations, and IDH wild-type gliomas. IDH mutant gliomas without TP53 mutations, which mostly corresponded to gliomas carrying 1p19q co-deletions, showed lower recurrence rates than the other 2 groups. In the other high-recurrence groups, the median progression-free survival (PFS) and overall survival (OS) of patients with IDH mutant gliomas with TP53 mutations were significantly longer than those of patients with IDH wild-type gliomas. Notably, most IDH mutant gliomas with TP53 mutations had at least one of the CNAs +7q, +8q, -9p, and -11p. Moreover, IDH mutant gliomas with at least one of these CNAs had a significantly worse prognosis than did other IDH mutant gliomas. PCR-based mutation analyses of IDH and TP53 were sufficient for simple genetic diagnosis of glioma that were strongly associated with prognosis of patients and enabled us to detect negative CNAs in IDH mutant gliomas.
منابع مشابه
World Health Organization grade II–III astrocytomas consist of genetically distinct tumor lineages
Recent investigations revealed genetic analysis provides important information in management of gliomas, and we previously reported grade II-III gliomas could be classified into clinically relevant subgroups based on the DNA copy number aberrations (CNAs). To develop more precise genetic subgrouping, we investigated the correlation between CNAs and mutational status of the gene encoding isocitr...
متن کاملRemote intracranial recurrence of IDH mutant gliomas is associated with TP53 mutations and an 8q gain
Most IDH mutant gliomas harbor either 1p/19q co-deletions or TP53 mutation; 1p/19q co-deleted tumors have significantly better prognoses than tumors harboring TP53 mutations. To investigate the clinical factors that contribute to differences in tumor progression of IDH mutant gliomas, we classified recurrent tumor patterns based on MRI and correlated these patterns with their genomic characteri...
متن کاملMolecular–genetic and clinical characteristics of gliomas with astrocytic appearance and total 1p19q loss in a single institutional consecutive cohort
The prognostic significance of 1p19q loss in astrocytic gliomas has been inconclusive.We collected 57 gliomas with total 1p19q loss from among 218 cases of WHO grade-II/III gliomas operated at Keio University Hospital between 1990 and 2010. These tumors were classified as oligodendroglial or "astrocytic" by a WHO-criteria-based institutional diagnosis. Chromosomal copy number aberrations (CNAs)...
متن کاملIDH1/2 mutations target a key hallmark of cancer by deregulating cellular metabolism in glioma.
Isocitrate dehydrogenase (IDH) enzymes have recently become a focal point for research aimed at understanding the biology of glioma. IDH1 and IDH2 are mutated in 50%-80% of astrocytomas, oligodendrogliomas, oligoastrocytomas, and secondary glioblastomas but are seldom mutated in primary glioblastomas. Gliomas with IDH1/2 mutations always harbor other molecular aberrations, such as TP53 mutation...
متن کاملAccumulation of 2-hydroxyglutarate in gliomas correlates with survival: a study by 3.0-tesla magnetic resonance spectroscopy
INTRODUCTION Previous magnetic resonance spectroscopy (MRS) and mass spectroscopy studies have shown accumulation of 2-hydroxyglutarate (2HG) in mutant isocitrate dehydrogenase (IDH) gliomas. IDH mutation is known to be a powerful positive prognostic marker in malignant gliomas. Hence, 2HG accumulation in gliomas was assumed to be a positive prognostic factor in gliomas, but this has not yet be...
متن کامل